Nanodragster[edit]
El Nanodragster, dobló al bólido automovilístico más pequeño, y es un nano automóvil .El diseño mejora un nanoauto previo y es un paso adelante para crear máquinas moleculares. El nombre proviene de la semejanza con un dragster puesto que tiene un eje más corto con ruedas más pequeñas adelante y un eje más grande con ruedas mayores atrás.
La traducción continuará
The nanocar was developed at Rice University’s Richard E. Smalley Institute Nanoscale Science and Technology by the team of James Tour, Kevin Kelly and other colleagues involved in its research.[5][6] The previous nanocar developed was 3 to 4 nanometers which was a little over[the width of?] a strand of DNA and was around 20,000 times thinner than a human hair.[7] These nanocars were built with carbon buckyballs for their four wheels, which made it need 400 °F (200 °C) to get it moving. On the other hand, a nanocar which utilized p-carborane wheels moves as if on ice.[8] Such observations led to the production of nanocars which had both wheel designs.
The Nanodragster is 50,000 times thinner than a human hair and has a top speed of 0.014 millimeters per hour (0.0006 in/h).[4][9][10] The rear wheels are spherical fullerene molecules, or buckyballs, composed of sixty carbon atoms each, which are attracted to a dragstrip that is made up of a very fine layer of gold. This design also enabled Tour’s team to operate the device at lower temperatures.
The nanodragster and other nano-machines are designed for use in transporting items. The technology can be used in manufacturing computer circuits and electronic components, or in conjunction with pharmaceuticals inside the human body.[11] Tour also speculated that the knowledge gained from the nanocar research would help build efficient catalytic systems in the future.
Electrically driven directional motion of a four-wheel molecule on a metal surface[edit]
Kudernac et al. described a specially designed molecule that has four motorized "wheels". By depositing the molecule on a copper surface and providing them with sufficient energy from electrons of a scanning tunnelling microscope they were able to drive some of the molecules in a specific direction, much like a car, being the first single molecule capable to continue moving in the same direction across a surface. Inelastic electron tunnelling induces conformational changes in the rotors and propels the molecule across a copper surface. By changing the direction of the rotary motion of individual motor units, the self-propelling molecular 'four-wheeler' structure can follow random or preferentially linear trajectories. This design provides a starting point for the exploration of more sophisticated molecular mechanical systems, perhaps with complete control over their direction of motion.[12]
Motor Nanocar[edit]
A future nanocar with a synthetic molecular motor has been developed by Jean-Francois Morin et al.[13] It is fitted with carborane wheels and a light powered helicene synthetic molecular motor. Although the motor moiety displayed unidirectional rotation in solution, light-driven motion on a surface has yet to be observed. Motility in water and other liquids can be also realized by a molecular propeller in the future.
Nanodragster[edit]
The Nanodragster, dubbed the world's smallest hot rod, is a molecular nanocar.[1][4] The design improves on previous nanocar designs and is a step towards creating molecular machines. The name comes from the nanocar's resemblance to a dragster, as it has a shorter axle with smaller wheels in the front and a larger axle with larger wheels in the back.
The nanocar was developed at Rice University’s Richard E. Smalley Institute Nanoscale Science and Technology by the team of James Tour, Kevin Kelly and other colleagues involved in its research.[5][6] The previous nanocar developed was 3 to 4 nanometers which was a little over[the width of?] a strand of DNA and was around 20,000 times thinner than a human hair.[7] These nanocars were built with carbon buckyballs for their four wheels, which made it need 400 °F (200 °C) to get it moving. On the other hand, a nanocar which utilized p-carborane wheels moves as if on ice.[8] Such observations led to the production of nanocars which had both wheel designs.
The Nanodragster is 50,000 times thinner than a human hair and has a top speed of 0.014 millimeters per hour (0.0006 in/h).[4][9][10] The rear wheels are spherical fullerene molecules, or buckyballs, composed of sixty carbon atoms each, which are attracted to a dragstrip that is made up of a very fine layer of gold. This design also enabled Tour’s team to operate the device at lower temperatures.
The nanodragster and other nano-machines are designed for use in transporting items. The technology can be used in manufacturing computer circuits and electronic components, or in conjunction with pharmaceuticals inside the human body.[11] Tour also speculated that the knowledge gained from the nanocar research would help build efficient catalytic systems in the future.
Electrically driven directional motion of a four-wheel molecule on a metal surface[edit]
Kudernac et al. described a specially designed molecule that has four motorized "wheels". By depositing the molecule on a copper surface and providing them with sufficient energy from electrons of a scanning tunnelling microscope they were able to drive some of the molecules in a specific direction, much like a car, being the first single molecule capable to continue moving in the same direction across a surface. Inelastic electron tunnelling induces conformational changes in the rotors and propels the molecule across a copper surface. By changing the direction of the rotary motion of individual motor units, the self-propelling molecular 'four-wheeler' structure can follow random or preferentially linear trajectories. This design provides a starting point for the exploration of more sophisticated molecular mechanical systems, perhaps with complete control over their direction of motion.[12]
Motor Nanocar[edit]
A future nanocar with a synthetic molecular motor has been developed by Jean-Francois Morin et al.[13] It is fitted with carborane wheels and a light powered helicene synthetic molecular motor. Although the motor moiety displayed unidirectional rotation in solution, light-driven motion on a surface has yet to be observed. Motility in water and other liquids can be also realized by a molecular propeller in the future.
No hay comentarios:
Publicar un comentario